Муниципальное автономное общеобразовательное учреждение

«Средняя общеобразовательная школа № 27

с углубленным изучением отдельных предметов»

г. Балаково Саратовской области

МАОУ СОШ № 27

Россия, 413864, Саратовская обл., г.Балаково, ул.Степная, д.30 ИНН 6439017636; КПП 643901001; ОГРН 1026401408450

тел./факс: 8(8453)39-04-80 email:balakovo.school.27@mail.ru web: https://shkola27balakovo-r64

СОГЛАСОВАНО:

Педагогическим советом

МАОУ СОШ № 27

Протокол от 30.08. 2024 № 1

УТВЕРЖДАЮ:

Директор МАОУ СОШ № 27

WW В.О. Золотова

Приказ от 30 ОР. 2024 № 345

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА

«Фабрика детских идей. Лазерквантум»

(технической направленности)

программа разработана для реализации на базе Детского технопарка «Кванториум»

Возраст обучающихся: 10-12 лет Срок реализации программы: 1 год

Объем программы: 36 часов

Автор программы: Тагаева Ольга Александровна педагог дополнительного образования МАОУ СОШ № 27

Структура ДООП

1.	Комплекс основных характ	еристик
	дополнительной общеобразовательной	общеразвивающей
-	ограммы	
1.1.	. Пояснительная записка	
1.2.	2. Цель и задачи программы	5
1.3.	3. Планируемые результаты	
1.4.	l. Содержание программы	6
1.5.	5. Форма аттестации	8
2.	Комплекс организационно-педагогичес	еких условий
2.1.	. Методическое обеспечение	8
2.2.	2. Условия реализации	8
2.3.	3. Календарный учебный график	9
2.4.	l. Оценочные материалы	
2.5.	5. Список литературы	

1. Комплекс основных характеристик дополнительной общеобразовательной общеразвивающей программы

1.1. Пояснительная записка

общеобразовательная Настоящая дополнительная общеразвивающая программа «Фабрика детских идей. Лазерквантум» разработана с учетом документов нормативной базы ДООП: Федеральный закон от 29 декабря 2012 года №273-ФЗ «Об образовании в Российской Федерации»; Порядок организации образовательной И осуществления деятельности ПО дополнительным общеобразовательным программам (утв. Приказом Министерства просвещения Российской Федерации 27 июля 2022 No 629); ОΤ Γ. Правила персонифицированного дополнительного образования в Саратовской области (утв. Приказом Министерства образования Саратовской области от 21.05.2019 г. № 1077, с изменениями от 14.02.2020 года, от 12.08.2020 года); Санитарные правила 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (утв. Постановлением Главного государственного санитарного врача Российской Федерации от 28.09.2020 г. № 28).

Дополнительная общеобразовательная общеразвивающая программа «Фабрика детских идей. Лазерквантум» относится к общеразвивающим программам, имеет техническую направленность, разработана для детей 10-12 лет.

Программа обучает детей современным технологиям, связанным с использованием лазеров, погружает детей в интересным мир физики света, знакомит с технологическими процессами (резка, гравировка, пробивка отверстий и т.п.), дает детям основы технологического предпринимательства.

Актуальность.

Обучение происходит в программе КОМПАС-3D популярная и всемирно известная программа, главным предназначением которой являются создание и обработка документов, выполненных в формате векторной графики.

Новизна данной программы состоит в одновременном изучении как основных теоретических, так и практических аспектов лазерных технологий, что обеспечивает глубокое понимание инженерно-производственного процесса в целом.

Программа направлена на воспитание современных детей, как творчески активных и технически грамотных начинающих инженеров, способствует возрождению интереса молодежи к технике, в воспитании культуры жизненного и профессионального самоопределения.

Программа предполагает организацию образовательного процесса в деятельностном подходе, что позволяет в перспективе обратить деятельность обучающихся по переработке полученной информации в собственные личностные знания, по выработке соответствующих умений и навыков эффективно осуществлять познавательную деятельность и быть подготовленным к самообразованию и самоорганизации.

Практическая значимость.

Данная программа уникальна по своим возможностям и направлена на знакомство с современными технологиями и стимулированию интереса учащихся к технологиям конструирования и моделирования.

Педагогическая целесообразность данной программы:

- использование на занятиях доступных для детей понятий и терминов, следование принципу «от простого к сложному»;
- учет разного уровня подготовки детей, опора на имеющийся опыт обучающихся;
 - системность, последовательность и доступность излагаемого материала;
 - приоритет практической деятельности;
- развитие в учащихся самостоятельности, творчества и изобретательности является одним из основных приоритетов данной программы.

Отличительные особенности.

Представляемая программа имеет существенный ряд отличий от существующих аналогичных программ. Программа предполагает не только

обучение «черчению» или освоению по программе КОМПАС-3D», а именно использованию этих знаний, как инструмента при решении задач различной сложности.

Режим занятий и сроки реализации.

Срок реализации программы — 1 год, 1 раз в неделю по 1 академическому часу (45 минут), 36 часов в год. Программа предусматривает групповые занятия 10-15 чел.

1.2. Цель и задачи программы.

Цель:

Формирование компетенции «Фабрика детских идей. Лазерквантум» при работе с высокотехнологичным оборудованием, изобретательства и инженерии; применение ее в практической работе и в проектах.

Задачи:

- научить проектированию и созданию двухмерных макетов;
- научить практической работе на лазерном оборудовании;
- развивать навыки, необходимые для проектной деятельности;
- развивать разные типы мышления.

1.3. Планируемые результаты Предметные результаты.

Знания:

- знает основы техники безопасности при работе с оборудованием;

Умения:

- получить начальные сведения о лазере;
- освоить создание макетов;
- создавать различные проекты;
- работать с лазерным комплексом;
- резка на лазерном станке.

Метапредметные действия:

- умеет рационально использовать в работе имеющиеся ресурсы: материальнотехнические, временные, информационные и др.;
 - адекватно принимает конструктивную критику в свой адрес;

Метапредметные результаты:

- умеет работать в коллективе;
- умеет анализировать результаты совместной деятельности;

Личностные результаты.

У учащихся будут сформированы умения:

- самостоятельно и творчески реализовывать собственные замыслы;
- организовывать свое рабочее место под руководством учителя.

1.4. Содержание программы

Учебный план

№	Содержание	Количество часов		Форма аттестации/	
п/п		Всего	Теория	Практика	контроля
1 модуль	Знакомство с программой моделирования Компас-3D	12	6	6	Опрос Пробная печать
2 модуль	Создание 2-3D моделей и их изготовление	20	10	10	Контрольное задание. Работа на лазерном станке, сборка моделей.
3 модуль	Выставка моделей	4	2	2	Выставка авторских моделей
	Итого:	36	18	18	

Всего: 36 часов

Содержание программы.

1 модуль.

Введение (4 ч.)

Техника безопасности поведения в кабинете и при работе с лазерным станком. Расписание занятий. Основная теоретическая информация о курсе. Знакомство оборудованием, его возможностями и применяемыми материалами.

Основы работы с программой КОМПАС-3D (6 ч.)

Знакомство с графическим редактором КОМПАС-3D и возможностями работы в нем.

Подготовка файлов для лазерной резки и гравировки на лазерном станке (2 ч.)

Основная информация о требованиях к файлам, загружаемым на лазерный станок.

2 модуль.

Проектная работа №1 «Изготовление плоских изделий» (5 ч.)

Полный цикл изготовления изделия на выбор учащегося. Возможные варианты выбора: подставка под горячее, пазл, брелок, фоторамка и др.

Проектная работа №2 «Изготовление сувенира с надписью» (5 ч.) Полный цикл изготовления изделия на выбор учащегося. Возможные варианты выбора: календарь, метрика, хэштег, разделочная доска и др.

Проектная работа №3 «Изготовление сборочной модели» (10 ч.)

Полный цикл изготовления изделия на выбор учащегося. Возможные варианты выбора: шкатулка, самолет, дерево для украшений, скворечник, подставка для телефона и др.

3 модуль.

Теория (2 ч.) Подведение итогов. Анализ достигнутых успехов, выявление сложностей в изучении программы моделирования. Обсуждение результатов. Подготовка авторских моделей к выставке. Оформление.

Практика (2 ч.) Выставка моделей.

1.5. Форма аттестации

Результатом освоения программы является защита индивидуальных или групповых проектных работ. Также на результат освоения дополнительной образовательной программы влияет участие обучающихся в конкурсах различного уровня.

2. Комплекс организационно-педагогических условий

2.1. Методическое обеспечение

Образовательный процесс предполагает применение интерактивных методов обучения и различных педагогических технологий: личностно-ориентированного обучения, дифференцированного обучения и здоровье- сберегающих технологий.

Процесс обучения выстраивается на основе традиционных дидактических принципов (наглядности, непрерывности, целостности, вариативности, психологической комфортности).

2.2. Условия реализации

Условия реализации программы:

- Компьютерный класс;
- Интерактивный комплекс с вычислительным блоком и мобильным креплением;
 - Станок лазерной резки с числовым программным управлением;
- Многофункциональная станция для механической обработки и прототипирования
- Рабочее поле 400*600 мм. Фанера ФК 4мм 1500*1500 мм не менее 10 листов
 - Наждачная бумага, надфили, акриловая краска, водный лак, кисточки.

Для учителя: медиапроектор, презентации по темам, наглядные пособия, ресурсы Internet.

Для ученика: тетрадь в клетку, чертежные инструменты, карандаши, персональный компьютер, учебные пособия, ресурсы Internet.

Методы и приемы организации образовательного процесса:

- Инструктажи, беседы, разъяснения
- Наглядные фото и видеоматериалы по лазерной резке
- Практическая работа с программой с «КОМПАС-3D»
- Проектная работа

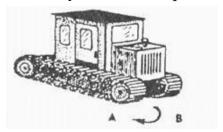
Метод стимулирования (участие в конкурсах, поощрение, выставка работ).

2.3. Календарно-тематическое планирование

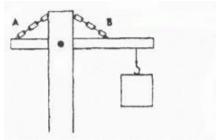
N π/π	Форма занятия	Кол-во часов	Тема занятия	Форма контроля
1	Вводное занятие	2	Техника безопасности в компьютерном классе Устройство лазерного станка с ЧПУ	Лекция
2	Рассказ педагога	2	Материалы для лазерной резки и гравировки Возможности лазерной резки и гравировки, фокусное расстояние	Беседа
3	Рассказ педагога	2	Возможности программы КОМПАС-3D	Беседа, лекция
4	Практическая работа	1	Практическая работа по резке бумаги	Практическое задание
5	Практическая работа	1	Практическая работа по резке фетра	Практическое задание
6	Практическая работа	1	Создание макета для лазерной резки	Беседа, практическое задание
7	Практическая работа	1	Создание макета для лазерной гравировки	Беседа, практическое задание
8	Практическая работа	2	Практическая работа по резке и гравировки фанеры	Практическое задание
9	Рассказ педагога	2	Удаление постлазерного нагара	Беседа
10	Практическая работа	2	Создание макета для лазерной резки и гравировки	Практическое задание
11	Практическая работа	2	Резка и гравировка деталей на лазерном станке	Практическое задание
12	Практическая работа	2	Сборка и доработка проектной работы	Практическое задание
13	Практическая работа	2	Создание макета для лазерной резки и гравировки	Практическое задание
14	Практическая работа	2	Резка и гравировка деталей на лазерном станке	Практическое задание

15	Практическая работа	2	Сборка и доработка проектной работы	Практическое задание
16	Практическая работа	2	Создание макета для лазерной резки и гравировки	Практическое задание
17	Практическая работа	2	Резка и гравировка деталей на лазерном станке	Практическое задание
18	Практическая работа	2	Сборка и доработка проектной работы	Практическое задание
19	Практическая работа	2	Презентация проектной работы	Практическое задание
20	Практическая работа	2	Подведение итогов. Оформление выставок.	Практическое задание

2.4. Оценочные материалы

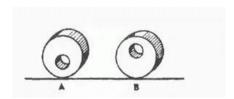

В качестве форм отслеживания и фиксации образовательных результатов при реализации программы используются:

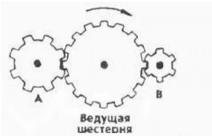
- 1) тестирование;
- 2) портфолио с результатами выполнения лабораторных и практических работ


3) защита проектов.
1. Промежуточный контроль
1. Перечислите материалы для лазерной резки и гравировки:
2. Перечислите основные элементы рабочего окна программы КОМПАО 3D:
3. Укажите путь настройки сетки рабочего пространства:

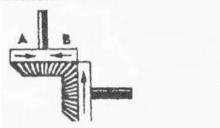
2. Входной контроль: 1. Если левая шестерня поворачивается	рамме КОМПАС-3D:
1. Если левая шестерня поворачивается	
1. Если левая шестерня поворачивается	ой резки и гравировки:
1. Если левая шестерня поворачивается	
направлении, то в каком направлении б шестерня?	_

- 2. В направлении стрелки А;
- 3. В направлении стрелки В;
- 4. Не знаю.
- 1. Какая гусеница должна двигаться быстрее, чтобы трактор поворачивался в указанном стрелкой направлении?

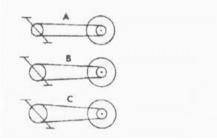

- 1 Гусеница А;
- 2 Гусеница В;
- 3 Не знаю.
- 2. Нужны ли обе цепи, изображенные на рисунке, для поддержки груза, или достаточно только одной? Какой?


- 1 Достаточно цепи А;
- 2 Достаточно цепи В;
- 3 Нужны обе цепи.
- 3. Колесо и тормозная колодка изготовлены из одного и того же материала. Что быстрее износится: колесо или колодка?

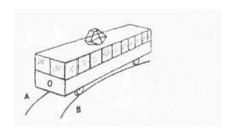
- 1 Колесо износится быстрее;
- 2 Колодка износится быстрее;
- 3 И колесо, и колодка
- 4 износятся одинаково.
- 4. В каком положении остановится диск после свободного движения по указанной линии?
- 1 В каком угодно;
- 2 В положении А;
- 3 В положении В.



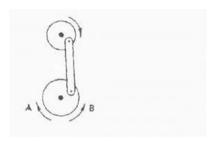
5. Если первая шестерня вращается в направлении, указанном стрелкой, то в каком направлении вращается верхняя шестерня?



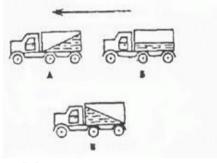
1 В направлении стрелки А;


2 В направлении стрелки В;

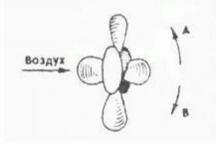
6. При каком виде передачи подъем в гору на велосипед е легче?

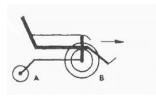


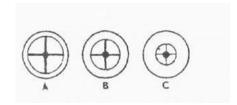
- 1 При передаче типа А;
- 2 При передаче типа В;
- 3 При передаче типа С.
- 7. Какой из двух рельсов должен быть выше на повороте?

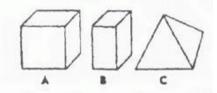


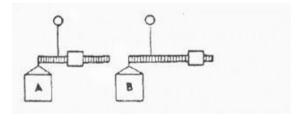
- 1 Рельс А;
- 2 Рельс В;
- 3 Оба рельса должны быть одинаковыми по высоте


- 8. Если маленькое колесо будет вращаться в направлении, указанном стрелкой, то как будет вращаться большое колесо?
- 1 В направлении стрелки А;
- 2 В обе стороны;
 - 3 В направлении стрелки В.


9. Какая из машин с жидкостью в бочке тормозит?

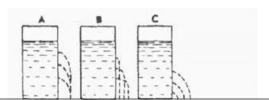

- 1 Машина А;
- 2 Машина Б;
- 3 Машина В.
- 10. В каком направлении будет вращаться вентилятор под напором воздуха?


- 1 В направлении стрелки А;
- 2 В направлении стрелки В;
- 12. Какое колесо кресло коляски вращается быстрее при движении коляски?


- 1 Колесо А вращается быстрее;
- 2 Оба колеса вращаются с одинаковой скоростью;
- 3 Колесо В вращается быстрее.
- 13. Какое из колес, изготовленных из одинакового материала, будет вращаться дольше, если их раскрутить до одинаковой скорости?

- 1 Колесо А;
- 2 Колесо В;
- 3 Колесо С.
- 14. Вес фигур А, В и С одинаковый. Какую из них труднее опрокинуть?

- а. Фигуру А;
- b. Фигуру B;
- с. Фигуру С.
- 15. Бруски А и В имеют одинаковые сечения и изготовлены из одного и того же материала. Какой из брусков может выдержать больший вес?
 - 1 Оба выдержат одинаковую нагрузку;
 - 2 Брусок А;
 - 3 Брусок В.
- 16. Одинаков ли вес обоих ящиков или один из них легче?



- 1 Ящик А легче;
- 2 Ящик В легче;
- 3 Ящики одинакового веса.
- 17.На каком из рисунков правильно изображена вода, выливающаяся из отверстий сосуда

1 На рисунке А;

2 На рисунке В;

3 На рисунке С

2.5. Список литературы

- 1. Григорьянц А.Г., Сафонов А.Н. Лазерная техника и технология., т. 6. М.: Высшая школа, 2008.
- 2. Лазеры в технологии. Под ред. М.Ф. Стельмаха. М.: Энергия, 2015.
- 3. Рыкалин Н.Н., Углов А.А., Кокора А.Н. Лазерная обработка материалов. М.: Машиностроение, 2015.
- 4. Вейко В.П., Петров А.А. Введение в лазерные технологии [Электронный ресурс]: опорный конспект лекций по курсу «Лазерные технологии». СПб: СПбГУ ИТМО, 2009. Режим доступа: http://books.ifmo.ru/book/442/
- 5. Уроки КОМПАС-3D для начинающих.